Automated Measurement of Neuromuscular Jitter Based on EMG Signal Decomposition
ثبت نشده
چکیده
The quantitative analysis of decomposed electromyographic (EMG) signals reveals information for diagnosing and characterizing neuromuscular disorders. Neuromuscular jitter is an important measure that reflects the stability of the operation of a neuromuscular junction. It is conventionally measured using single fiber electromyographic (SFEMG) techniques. SFEMG techniques require substantial physician dexterity and subject cooperation. Furthermore, SFEMG needles are expensive, and their re-use increases the risk of possible transmission of infectious agents. Using disposable concentric needle (CN) electrodes and automating the measurment of neuromuscular jitter would greatly facilitate the study of neuromuscular disorders. An improved automated jitter measurment system based on the decomposition of CN detected EMG signals is developed and evaluated in this thesis. Neuromuscular jitter is defined as the variability of time intervals between two muscle fiber potentials (MFPs). Given the candidate motor unit potentials (MUPs) of a decomposed EMG signal, which is represented by a motor unit potential train (MUPT), the automated jitter measurement system designed in this thesis can be summarized as a three-step procedure: 1) identify isolated motor unit potentials in a MUPT, 2) detect the significant MFPs of each isolated MUP, 3) track significant MFPs generated by the same muscle fiber across all isolated MUPs, select typical MFP pairs, and calculate jitter. In Step one, a minimal spanning tree-based 2-phase clustering algorithm was developed for identifying isolated MUPs in a train. For the second step, a pattern recognition system was designed to classify detected MFP peaks. At last, the neuromuscular jitter is calculated based on the tracked and selected MFP pairs in the third step. These three steps were simulated and evaluated using synthetic EMG signals independently, and the whole system is preliminary implemented and evaluated using a small simulated data base. Compared to previous work in this area, the algorithms in this thesis showed better performance and great robustness across a variety of EMG signals, so that they can be applied widely to similar scenarios. The whole system developed in this thesis can be implemented in a large EMG signal decomposition system and validated using real data.
منابع مشابه
Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملAutomatically Measuring Neuromuscular Jitter
ii I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract The analysis of electromyographic (EMG) signals detected during muscle contraction provides important information to aid in the diagnosis ...
متن کاملMotor Unit Potential Train Validation and Its Application in EMG Signal Decomposition
Electromyographic (EMG) signal decomposition is the process of resolving an EMG signal into its constituent motor unit potential trains (MUPTs). The purpose of EMG signal decomposition is to provide an estimate of the firing pattern and motor unit potential (MUP) template of each active motor unit (MU) that contributed significant MUPs to the EMG signal. The extracted MU firing patterns, MUP te...
متن کاملAxonal stimulation for end-plate jitter studies.
This single fibre EMG study compares the standard method of neuromuscular jitter measurement in voluntarily activated muscle to that by intramuscular electrical stimulation of motor axons in a group of normal subjects. The latter method avoids the interdischarge interval-dependent jitter, as well as a possible failure to recognise split muscle fibres. The mean MCD on axonal stimulation was only...
متن کاملEmg Decomposition: a System for Extraction and Visualization of Motor Unit Action Potentials
This paper presents a developed tool capable of decomposing electromyographic signals (EMG) named EMG Decomposition. The main aim of this software is to extract and to visualize motor unit action potentials extracted from EMG signals during a muscular contraction. The results obtained from the tool have application in the study of the behavior of the central nervous system and in the diagnosis ...
متن کامل